
7/27/2021

1

ECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca

dwharder@gmail.com

The Dormand-Prince method

Introduction

• In this topic, we will

– Derive and describe the adaptive Dormand-Prince method

– Look at the implementation

– See two examples

The Dormand-Prince method

2

1

2

7/27/2021

2

Recap of 4th-order Runge-Kutta

• Given (tk, yk), the 4th-order Runge-Kutta method sampled the
slope four times:

– Note that two samples were inside the interval [tk, tk + h]

• We then took a weighted average of these slopes:

The Dormand-Prince method

3

()

()

()

()

0

1 1
1 02 2

1 1
2 12 2

3 2

,

,

,

,

k k

k k

k k

k k

s f t y

s f t h y hs

s f t h y hs

s f t h y hs



 + +

 + +

 + +

0 1 2 3
1

2 2

6
k k

s s s s
y y h+

+ + +
 +

Dormand-Prince method

• Given (tk, yk), the method sampled the slope seven times:

The Dormand-Prince method

4

()

()
0

1 1
1 05 5

0 13 3
2 10 10

0 1 24 4
3 5 5

0 1 2 38 8
4 9 9

0 1 2
5

,

,

3
,

4

11 42 40
,

9

4843 19020 16112 477
,

1458

477901 1806240 1495424 46746
,

k k

k k

k k

k k

k k

k k

s f t y

s f t h y hs

s s
s f t h y h

s s s
s f t h y h

s s s s
s f t h y h

s s s
s f t h y h



 + +

+ 
 + + 

 

− + 
 + + 

 

− + − 
 + + 

 

− + +
 + + 3 4

0 2 3 4 5
6

45927

167904

12985 64000 92750 45927 18656
,

142464
k k

s s

s s s s s
s f t h y h

− 
 
 

+ + − + 
 + + 

 

z

0 2 3 4 5 61921409 9690880 13122270 5802111 1902912 534240

21369600
k

s s s s s s
y y h

+ + − + +
 +

3

4

7/27/2021

3

Dormand-Prince method

• Important:

– For a single step, the error of the approximation z is O(h6)

• The literature refers to this one as fifth-order

• This is similar to referring to 4th-order Runge-Kutta which is
actually O(h5) for a single step

– Similarly, a single step of the approximation y is O(h5)

The Dormand-Prince method

5

Dormand-Prince method

• From analysis, y has an O(h5) error

– Solving this for C yields:

• We want to choose the ideal ah so that the error is eabs(ah)

– Solving this for a yields

– Substituting in the approximation of C from above:

The Dormand-Prince method

6

52 z y Ch− 

() ()
5

absC ah ahe=

5

2 z y
C

h

−


abs
4

2

h
a

z y

e
=

−

4 abs

4
a

Ch

e
=

5

6

7/27/2021

4

Implementation

• The implementation requires a few constants
std::size_t const DIM{7};

double step[DIM - 1]{

1.0/5.0, 3.0/10.0, 4.0/5.0, 8.0/9.0, 1.0, 1.0

};

double tableau[DIM - 1][DIM - 1]{

{ 1.0 },

{ 1.0/4.0, 3.0/4 },

{ 11.0/9.0, -14.0/3.0, 40.0/9.0 },

{ 4843.0/1458.0, -3170.0/243.0, 8056.0/729.0, -53.0/162.0 },

{ 9017.0/3168.0, -355.0/33.0, 46732.0/5247.0, 49.0/176.0, -5103.0/18656.0 },

{ 35.0/384.0, 0.0, 500.0/1113.0, 125.0/192.0, -2187.0/6784.0, 11.0/84.0 }

};

double y_coeff[DIM]{

5179.0/57600.0, 0.0, 7571.0/16695.0, 393.0/640.0, -92097.0/339200.0, 187.0/2100.0, 1.0/40.0

};

The Dormand-Prince method

7

()(),0 0 , 1 1,i k i k i i i i is f t hc y hc d s d s− − + + + +

Implementation

• The implementation is only slightly more complex:
do {

double s[DIM]{ qdy.back() };

double z{};

for (std::size_t i{0}; i < DIM - 1; ++i) {

double slope{0.0};

for (std::size_t j{0}; j <= i; ++j) {

slope += tableau[i][j]*s[j];

}

z = qy.back() + h*step[i]*slope;

s[i + 1] = f(qt.back() + h*step[i], z);

}

The Dormand-Prince method

8

7

8

7/27/2021

5

Implementation
double slope_y{0.0};

for (std::size_t i{0}; i < DIM; ++i) {

slope_y += y_coeff[i]*s[i];

}

double y{ qy.back() + h*slope_y };

double a{ std::pow(

eps_abs*h/(2.0*std::abs(z - y)), 0.25

) };

if ((a > 1.0) || (h == h_rng.first)) {

qt.push(qt.back() + h);

qy.push(z);

qdy.push(f(qt.back(), z));

found = true;

}

a *= 0.9;

The Dormand-Prince method

9

Implementation

• On slide 4, we represent the calculations as:

– In the implementation, you will note it appears as

– You may be tempted to do the following:

– Issue: if h is small, this may result in a sum of denormalized
numbers, which will magnify the error

The Dormand-Prince method

10

0 1 2 38 8
4 9 9

4843 19020 16112 477
,

1458
k k

s s s s
s f t h y h

− + − 
 + + 

 

() ()8 8
4 0 1 2 39 9

4843 19020 16112 477
,

1458 1458 1458 1458
k ks f t h y h s s s s

  
 + + − + −  

  

38 8 8 8 8
4 0 1 2 39 9 9 9 9

16112 4774843 19020 477
,

1458 1458 1458 1458
k k

s
s f t h y h s h s h s h s

− 
 + + − + − 

 

9

10

7/27/2021

6

Example

• Suppose we have

– With hmin = 0.01 , hmax = 1 and eabs = 0.00001, we have

– Now, the maximum hmax is more relevant,
as we are using cubic splines to approximate values between
these approximations

The Dormand-Prince method

11

() () () ()

()

1
0.2 sin 0.1

0 1

y t y t t

y

= − − −

=

Example

• Suppose we have

– With hmin = 0.01 , hmax = 1 and eabs = 0.00001, we have

The Dormand-Prince method

12

() () ()
()

()

1
0 1

0.2
sin 0.1 1

0 1

t
y t y t

t t

y


= − − 

− 

=

11

12

7/27/2021

7

Summary

• Following this topic, you now

– Understand the adaptive Dormand-Prince method

– Are aware of the calculations required

– Know the derivation of the appropriate scaling factor a

– Have seen the implementation

– Have seen two examples

The Dormand-Prince method

13

References

[1] https://en.wikipedia.org/wiki/Dormand-Prince_method

[3] https://en.wikipedia.org/wiki/Adaptive_algorithm

[4] https://en.wikipedia.org/wiki/Adaptive_step_size

The Dormand-Prince method

14

13

14

7/27/2021

8

Acknowledgments

Tazik Shahjahan for pointing out typos.

Aristedes Jose B. Aquino Jr. from YouTube who pointed out that one of the
coefficients on Slide 4 had

··· – 64000s2 + ··· and not ··· + 64000s2 + ···

– The subsequent MATLAB code has the correct sign

The Dormand-Prince method

15

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

The Dormand-Prince method

16

15

16

7/27/2021

9

Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

The Dormand-Prince method

17

17

