

1

Recap of $4^{\text {th }}$-order Runge-Kutta

- Given $\left(t_{k}, y_{k}\right)$, the $4^{\text {th }}$-order Runge-Kutta method sampled the slope four times:

$$
\begin{aligned}
& s_{0} \leftarrow f\left(t_{k}, y_{k}\right) \\
& s_{1} \leftarrow f\left(t_{k}+\frac{1}{2} h, y_{k}+\frac{1}{2} h s_{0}\right) \\
& s_{2} \leftarrow f\left(t_{k}+\frac{1}{2} h, y_{k}+\frac{1}{2} h s_{1}\right) \\
& s_{3} \leftarrow f\left(t_{k}+h, y_{k}+h s_{2}\right)
\end{aligned}
$$

- Note that two samples were inside the interval $\left[t_{k}, t_{k}+h\right]$
- We then took a weighted average of these slopes:

$$
y_{k+1} \leftarrow y_{k}+h \frac{s_{0}+2 s_{1}+2 s_{2}+s_{3}}{6}
$$

Dormand-Prince method

- Given $\left(t_{k}, y_{k}\right)$, the method sampled the slope seven times:

$$
\left.\begin{array}{rl}
s_{0} & \leftarrow f\left(t_{k}, y_{k}\right) \\
s_{1} & \leftarrow f\left(t_{k}+\frac{1}{5} h, y_{k}+\frac{1}{5} h s_{0}\right) \\
s_{2} & \leftarrow f\left(t_{k}+\frac{3}{10} h, y_{k}+\frac{3}{10} h \frac{s_{0}+3 s_{1}}{4}\right) \\
s_{3} & \leftarrow f\left(t_{k}+\frac{4}{5} h, y_{k}+\frac{4}{5} h \frac{11 s_{0}-42 s_{1}+40 s_{2}}{9}\right) \\
s_{4} & \leftarrow f\left(t_{k}+\frac{8}{9} h, y_{k}+\frac{8}{9} h \frac{4843 s_{0}-19020 s_{1}+16112 s_{2}-477 s_{3}}{1458}\right) \\
s_{5} & \leftarrow f\left(t_{k}+h, y_{k}+h \frac{477901 s_{0}-1806240 s_{1}+1495424 s_{2}+46746 s_{3}-45927 s_{4}}{167904}\right) \\
s_{6} & \leftarrow f(t_{k}+h, \underbrace{}_{k}+h \frac{12985 s_{0}+64000 s_{2}+92750 s_{3}-45927 s_{4}+18656 s_{5}}{142464}) \\
z
\end{array}\right)
$$

4

Dormand-Prince method

- Important:
- For a single step, the error of the approximation z is $\mathrm{O}\left(h^{6}\right)$
- The literature refers to this one as fifth-order
- This is similar to referring to $4^{\text {th }}$-order Runge-Kutta which is actually $\mathrm{O}\left(h^{5}\right)$ for a single step
- Similarly, a single step of the approximation y is $\mathrm{O}\left(h^{5}\right)$

5

Dormand-Prince method

- From analysis, y has an $\mathrm{O}\left(h^{5}\right)$ error

$$
2|z-y| \approx C h^{5}
$$

- Solving this for C yields:

$$
C \approx \frac{2|z-y|}{h^{5}}
$$

- We want to choose the ideal $a h$ so that the error is $\varepsilon_{\mathrm{abs}}(a h)$

$$
C(a h)^{5}=\varepsilon_{\mathrm{abs}}(a h)
$$

- Solving this for a yields

$$
a^{4}=\frac{\varepsilon_{\mathrm{abs}}}{C h^{4}}
$$

- Substituting in the approximation of C from above:

$$
a=\sqrt[4]{\frac{\varepsilon_{\mathrm{abs}} h}{2|z-y|}}
$$

Implementation

- The implementation requires a few constants
std: : size_t const dim\{7\}; $\quad s_{i} \leftarrow f\left(t_{k}+h c_{i}, y_{k}+h c_{i}\left(d_{i, 0} s_{0}+\cdots+d_{i, i-1} s_{i-1}\right)\right)$
double step[DIM - 1]\{
$\begin{array}{llllll}1.0 / 5.0, & 3.0 / 10.0, & 4.0 / 5.0, & 8.0 / 9.0, & 1.0, & 1.0\end{array}$
\};
double tableau[DIM - 1][DIM - 1]\{
\{ 1.0
$\{\quad 1.0 / 4.0, \quad 3.0 / 4$
$\{11.0 / 9.0, \quad-14.0 / 3.0, \quad 40.0 / 9.0$
$\{4843.0 / 1458.0,-3170.0 / 243.0, \quad 8056.0 / 729.0,-53.0 / 162.0$
$\{9017.0 / 3168.0,-355.0 / 33.0,46732.0 / 5247.0,49.0 / 176.0$,
$\{35.0 / 384.0, \quad 0.0, \quad 500.0 / 1113.0,125.0 / 192.0,-2187.0 / 6784.0,11.0 / 84.0\}$ \};
double y_coeff[DIM]\{
$5179.0 / 57600.0,0.0,7571.0 / 16695.0,393.0 / 640.0,-92097.0 / 339200.0,187.0 / 2100.0,1.0 / 40.0$ \};

7

Implementation

- The implementation is only slightly more complex:
do \{
double s[DIM]\{ qdy.back() \};
double z\{\};
for (std::size_t i\{0\}; i < DIM - 1; ++i) \{
double slope\{0.0\};
for (std::size_t j\{0\}; j <= i; ++j) \{ slope += tableau[i][j]*s[j];
\}
z = qy.back() + h*step[i]*slope;
s[i + 1] = f(qt.back() + h*step[i], z)
\}

```
    Implementation
double slope_y{0.0}
for ( std::size_t i{0}; i < DIM; ++i ) {
        slope_y += y_coeff[i]*s[i];
}
double y{ qy.back() + h*slope_y };
double a{ std::pow(
        eps_abs*h/(2.0*std::abs( z - y )), 0.25
) };
if ( (a > 1.0) || (h == h_rng.first) ) {
        qt.push( qt.back() + h );
        qy.push( z );
        qdy.push( f( qt.back(), z ) );
        found = true;
}
```



```
a *= 0.9;

\section*{Implementation}
- On slide 4 , we represent the calculations as:
\[
s_{4} \leftarrow f\left(t_{k}+\frac{8}{9} h, y_{k}+\frac{8}{9} h \frac{4843 s_{0}-19020 s_{1}+16112 s_{2}-477 s_{3}}{1458}\right)
\]
- In the implementation, you will note it appears as
\[
s_{4} \leftarrow f\left(t_{k}+\left(\frac{8}{9} h\right), y_{k}+\left(\frac{8}{9} h\right)\left(\frac{4843}{1458} s_{0}-\frac{19020}{1458} s_{1}+\frac{16112}{1458} s_{2}-\frac{477}{1458} s_{3}\right)\right)
\]
- You may be tempted to do the following:
\[
s_{4} \leftarrow f\left(t_{k}+\frac{8}{9} h, y_{k}+\frac{8}{9} h \frac{4843}{1458} s_{0}-\frac{8}{9} h \frac{19020}{1458} s_{1}+\frac{8}{9} h \frac{16112-477 s_{3}}{1458} s_{2}-\frac{8}{9} h \frac{477}{1458} s_{3}\right)
\]
- Issue: if \(h\) is small, this may result in a sum of denormalized numbers, which will magnify the error

\section*{Example}
- Suppose we have \(y^{(1)}(t)=-0.2 y(t)-\sin (t)-0.1\)
\[
y(0)=1
\]
- With \(h_{\text {min }}=0.01, h_{\max }=1\) and \(\varepsilon_{\text {abs }}=0.00001\), we have

- Now, the maximum \(h_{\max }\) is more relevant, as we are using cubic splines to approximate values between these approximations


\section*{Summary}
- Following this topic, you now
- Understand the adaptive Dormand-Prince method
- Are aware of the calculations required
- Know the derivation of the appropriate scaling factor \(a\)
- Have seen the implementation
- Have seen two examples



15

```

